Saturday, December 17, 2011
Automotive grade LiFePo battery cells and automotive grade brushless DC electric motor power controllers
http://www.ev-power.eu/
They also have high power motor controllers which are at or exceeding power class of a big hybrid aircraft.
Monday, October 31, 2011
External link: Article about Flying wings
Wednesday, October 12, 2011
Short note: Electric motors for hybrid or electric aircraft
http://www.jobymotors.com/public/views/pages/products.php
Electric Lazair uses these motors. Standard windings are available for up to 700 volt system!
Friday, October 7, 2011
Thursday, October 6, 2011
OT News and Comment from Author: This is a sad day - Steve Jobs has died
His legacy should not die. In whatever you do (his wisdom is not limited to computers and mobile phones, but also apply for aircraft, space technology and everywhere) - live your each day like it was your last day. Ask yourself, that what you would want to give to the world if this was your last day. Don't tolerate being mediocre, but create something that will change the World.
Steve is one of the rare people who had realized that statements like "maybe after 100 years we have the technology..." are simply failed logic. It does not take any period of time for something that would be like given from somebody. Nothing is given. Everybody has to work hard to make the dreams come true. There are no dreams coming true, if you don't work for what you dream for. This after 100 years never comes if everybody is just waiting for the time to make its work. Time will not make its work, it is the passionate people who do it. Stop dreaming, do what you want to do, and show to the World that you can do it. Do what you are passionate about, it is the passion that will change the world. Even if it is something market does not even consider to exist, but if you are passionate about it and find others who are too, just do it.
My sincere respect to Steve Jobs and my condolences to the family and fans world wide. But please everybody make his legacy to live on. Stay foolish. Stay hungry.
Thursday, September 22, 2011
Video: John Roncz: Inside story on Burt Rutan designs
Wednesday, September 21, 2011
Video: John Roncz's talk at Airventure 2011, Oshkosh, WI, USA
Thursday, September 15, 2011
Video: Dr. Pete Gall: Designing Light Aircraft. Airventure 2011.
Takeoff on Burt Rutan's Boomerang (video)
Wednesday, August 17, 2011
Ideas from Oshkosh. Cylons have a plan.
So the concept is about high efficiency, high altitude and long range. In other words, these are called as HALR. None of these concepts have been designed yet. But I think we have now defined a goal that can be used as a target where to aim at. And what is the motivation for this? For fun of course. And because we can.
The plan now has the following steps:
1. Develop, test fly, measure scale model aircraft of the full size concept. Electric propulsion is going to be used. The aircraft shall model the full size aircraft in configuration and prototype control mechanisms of the model 2 aircraft. Possibly more than 1 RC model needs to be built to validate feasibility of different configuration features. This step is very likely to succeed. There are no impediments for executing this plan.
2. Develop, test fly, measure a human piloted scale model of the full size concept. The plane is intended to utilize electric propulsion. The aircraft shall be able to carry at least 100 kg payload, stay at least tens of minutes in air and then safely land on a grass runway. This requires some feasibility analysis - this one needs to be super-light because the full size one needs to be light as well, and needs to be able carry substantial amount of fuel (300-400 kg). I will blog about what I will learn about structural design and also can validate the feasibility of the concept along the way. We saw that single place CriCri size small aircraft is ideal test bed for testing configurations, technologies etc. for the full size aircraft. This one must work from our summer cottage neighbor's airfield, in other words, needs to be relatively STOL. This has good chance to succeed but there are few impediments to clear out before this can succeed.
3. Develop, test fly the full size plane, and then fly it to Oshkosh. The plane is intended to have hybrid propulsion. The aircraft shall be able to fly at high altitude non-stop from Helsinki to Kangerlussuaq, refuel, and continue and fly next leg non-stop to Oshkosh. The plane shall be practical efficient transportation tool that can partially replace using commercial aviation. The plane shall carry at least two persons plus rescue equipment plus baggage plus full fuel, and must defeat Toyota Prius 2011 model in transportation efficiency. Some serious problem solving is required before this will succeed.
The plane shall be able to fly long distances non-stop to avoid cost of landing fees and other costs associated by stopping on places of no interest. There are no guarantees of success of any of the mentioned steps, but this is the intent. The intent is subject to change. But this is where we are at today. We are very limited by the budget unfortunately and it can affect to the timing and success of each step. If we had substantial budget for this available, we would like to work on this full time, but unfortunately this is not the case.
Tuesday, August 16, 2011
Book collection (updated)
Rating, Book
***** Aircraft Design: A Conceptual Approach. Fourth Edition. Daniel P. Raymer
Great standard book for everyone. A bit different equations than the Anderson's book. This + Anderson's book is a great combination.
*** Simplified Aircraft Design for Homebuilders. Daniel P. Raymer
This covers only basics. Does not take very long before the Aircraft Design: A Conceptual Approach is very much required. Not bad, but is not enough information for getting started with aircraft design alone. Can be a good introductory book if someone starts from scratch, sort of "soft landing" to the world of aerodynamics.
***** Aircraft Performance and Design. John D. Anderson, Jr.
Great overall book, similar to Raymer's book. I use this book very often.
* Aerodynamics for Engineers
Concentrates too much on transsonic and hypersonic and jets rather than subsonic design. I rarely open this book, I am not designing a Space Shuttle and even if I would, this is like phone book in the depth, depth of the book is rather small. Everything covered, but just very little.
** Aerodynamics for Engineering Students
Quite similar than the Aerodynamics for Engineers. But more basic. And nothing special here.
***** Fundamentals of Aerodynamics, by John Anderson
John D. Anderson's books are great. This one is no exception. Highly recommended.
** MODERN AIRCRAFT DESIGN, Volume 1 5th Edition, by Martin Hollmann.
You have to look at the source code of the basic programs to get something valuable of this book. Otherwise you will not be so much enlightened. I have been converting the programs to C++. It also has the Oshkosh airfoil program source code. Real vintage.
** MODERN AIRCRAFT DESIGN, Volume 2 4th Edition, by Martin Hollmann.You have to look at the source code of the basic programs to get something valuable of this book. Otherwise you will not be so much enlightened. I have been converting the programs to C++.
** COMPOSITE AIRCRAFT DESIGN. REVISED 2003. By Dr. Hal Loken and Martin Hollmann.You have to look at the source code of the basic programs to get something valuable of this book. Otherwise you will not be so much enlightened. I have been converting the programs to C++. There is some information on creating pressurized fuselage for Lancair IV if I remember the book right and also about lightning protection on composite aircraft (not sure, could be also in Advanced Aircraft Design, I do not have the book at hand when typing this). The information in general is not very deep, just listed how it can be done and that's it.
** MODERN AIRCRAFT DRAFTING by Eric and Martin Hollmann.You have to look at the source code of the basic programs to get something valuable of this book. Otherwise you will not be so much enlightened. I have been converting the programs to C++. And also if you use Rhino, the lofting programs presented on this book do not have so much importance. You can do the same more conveniently with 3D CAD. The information in general is not very deep, just listed how it can be done and that's it.
** ADVANCED AIRCRAFT DESIGN by Martin Hollmann.
You have to look at the source code of the basic programs to get something valuable of this book. Otherwise you will not be so much enlightened. I have been converting the programs to C++. The information in general is not very deep, just listed how it can be done and that's it.
***** BRUCE CARMICHAEL'S PERSONAL AIRCRAFT DRAG REDUCTION
Excellent book on drag, laminar flow and laminar bodies. No other book covers these. Old one, availability nowadays poor, but I have it. I am feeling lucky.
*** Model Aircraft Design
This covers basics from different perspective.
Jan Roskam: Aircraft Design parts 1-7
Jan Roskam: Airplane Flight Dynamics and Automated Flight Controls
Jan Roskam: Airplane Aerodynamics and Performance
Theory of Flight
Smith: Illustrated guide to aerodynamics
Ron Wanttaja: Kit airplane construction
Bingelis: Sportplane construction techniques
Synthesis of Subsonic Aircraft Design
Theoretical Aerodynamics
Hoerner: Fluid Dynamic Drag
Flight Performance of Aircraft
Design of the Airplane
Burt Rutan: Moldless composite sandwitch aircraft consrtuction
I am considering getting Theory of Wing sections. I heard in Oshkosh that actually the first part of it has interesting equations before the airfoil data, and that's where John Roncz program codes are largely based on. I did not buy it before because I thought that I do not need the NACA foil data. Now I have incentive to get that too.
Tip vortex reduction by tip propeller
Some analysis would be needed how much this would help. Of course it would depend on the weight of the plane. The heavier the plane, the more leakage to the tip, the more tip vortex would form. The bigger the benefit of having a opposite direction swirling motion to nullify the tip vortex formation.
John Roncz / OSH11: aspect ratio has nothing to do with induced drag
John Roncz was talking in his presentation about wing span, and finally noted about wing area, that he does not care about wing area, because induced drag has nothing to do with aspect ratio. That's why gliders have not only skinny wings, but also very long wings. That's why Rutan's aircraft have long wings, not only skinny wings. Lots of span is needed for low induced drag.
However, there is a geometrical relation about AR to the drag: The lower the AR, the higher is the wetted area for the given span. Wetted area is bad, it causes drag, you don't want extra wetted area. So the wing becomes skinny by definition. But now the wing is skinny (high AR) but also very long, and not only skinny.
There is another problem: I would think then that I want 20 meters long wing span, but very very narrow chord. The chord can not be infinitely narrow in order it to be structurally any sound, especially in speed. Therefore the higher the AR gets, and the lower the wetted area gets, the heavier the wing becomes. And the heavier it becomes, the worse gets the span loading if this is added to the weight of the plane. Then there is the another consideration, where I could taxi such plane which would have 20 meter span? On our airport even the Diamond's comparatively modest wing span is in some places a bit tricky.
Interesting dilemma. This also answers why there are multiple pods on some Rutan's aircrafts, along the span. The reason is to reduce induced drag, by moving the weight from the center more along the span. Then the lift required on the center where the lift given by the wing is worst does not give that unfavorable dip to lift distribution. And it reduces induced drag. On planes, like Globalflyer, induced drag plays major role in how much range the Brequet's equation gives.
But there is even more to this: the higher the AR gets, the lower the Re gets. The higher the altitude, also the lower the Re is again. The lower the Re, the higher is the profile drag. To get high L/D and thus efficiency one has to get also the profile drag down. And airplane efficiency is all about L/D (lift/drag), no less.
So my basic concept remains and does not need to be revised for another configuration alternatives:
- conventional (to be able to use efficient flaps)
- large span, low span loading (to reduce induced drag)
- high aspect ratio, relatively high wing loading (to avoid extra wetted area and that way to reduce drag and AR also to have steep lift curve slope (in other words, closer to the 2D airfoil simulations of infinite wings)
- larger than minimum size elevator for larger CG allowance - this is for practicality rather than minimum trim drag
- The large AR is also needed for this: cruising with high wing loading causes need for high Cl for cruise, which in turn causes high alpha. To reduce alpha, the steepness of the lift curve slope is your friend. The lift curve slope steepness will make the plane to cruise fairly low angle of attack despite of flying at high Cl at high altitude with high wing loading.
Friday, August 12, 2011
EAA article about "Carplane Developers Criticize BiPod... and Burt Responds"
I also listened Burt Rutan's presentations about Bipod in Oshkosh 2011.
This article on the EAA news tells that some carplane designer thinks Burt's Bipod is "too slippery". I really wonder what is the definition of too slippery. There is a group of misguided people who want airplanes to have lots of drag for them to "not be too slippery", in other words have aerodynamics of brick. I have bumped into Cessna pilots who think like that and they look for example our Diamond that "oh that is too slipperly plane for me". From my standpoint, that is not too clever.
Drag is always unfavorable and waste of resources. There can never be too little drag (except in landing configuration when drag is helpful to land the plane in a meaningful distance). Low drag when plane is cruising, has absolutely nothing to do with the flying qualities of the plane. Having more drag does not make the plane any easier to fly. Having more drag just means you have to burn more fuel, you have to have bigger engine, you have to beef up structure, to compensate, you have to put even bigger engine, and have even more fuel on board. Airplane being slippery is a myth. Some Cessna pilots think our Diamond is "slippery" or "too slippery for them". Yeah right, the truth is that the Diamond has better flying qualities than the C172, is easier to land and especially flare and it also stalls softer.
I wholeheartedly agree with Burt [about his Bipod]: "Gee, he complains that we have too much drag as a car but not enough drag as an airplane!"
I think the US LSA specification is deeply flawed as they have introduced the top speed limit. It will limit the category of LSA planes to such that it is not worth to make efficient planes and high drag has been made a standard. That is not too clever either. Apparently the rules have been set by non-pilots who do not have slightest clue on what makes airplanes safe and what makes them easy to fly [and land]... It is all about stability, stall speed, stall charasteristics and inertia. Europeans have understood that better since there is no top speed limit in Europe but there is a stringent stall speed requirement. Low inertia, low stall speed and gentle handling qualities, and no matter what is the top speed, the plane will be easy to fly.
Read about Burt Rutan's Bipod here:
http://www.airventure.org/news/2011/110727_bipod.html
Thursday, August 11, 2011
70% laminar airfoil KS-70pLaminar.DAT
I created this new airfoil which has 70% laminar flow according to the simulation (please note, this is not tested in wind tunnel). It has a little larger pitching moment than the other airfoils I have done, but the L/D at low angle of attack (zero degrees angle of attack is Cl 0.35) reaches L/D over 100 at Re 5000000. The minimum drag count is 30 (Cd = 0.0030) at Re 7000000. At 5000000 the drag count increases to 31.
The airfoil can be downloaded here: KS-70PLAMINAR.dat.
Simulation results at Re 500 000, 1 000 000, 5 000 000, 7 000 000, 10 000 000 (Cl-Cd polar):
Simulation results at 500 000, 1 000 000, 5 000 000, 7 000 000, 10 000 000 (L/D polar):
I will build RC scale model of this airfoil and test it with RC plane. At RC scale it will be a bit worse than best thin turbulent airfoils, but according to simulations, the polars are smooth to low Re which is desirable of course and this airfoil reaches at least the same Cd at the low Re than NACA 2415 unlike some other laminar airfoils.
Friday, July 15, 2011
Thinking: Curtis Channel Wing VSTOL considerations
However, what if you use electric motors instead and place that channel as a C on the tip of a wing? There is this 3D effect that flow tends to want to slip towards the tip and it causes wake turbulence and reduces Clmax. However, what if there is this C and then there is a prop inside the C. The flow comes to the prop and the prop sends it away and causes even bigger pressure differential between lower side of the wing and the upper side of the wing. With brushless DC electric motor it could be technically doable - one could not think about putting a Lycosaurus to the wing tip. You could even add redundancy by adding two motors in cascade. Should one fail, the another one would still be operational.
I think there are two kinds of aircraft that would be needed to cover the needs of personal air transportation: super stol/vtol for flying to airport from home to the pressurized long range plane that can cover large distances. I think today's general aviation falls in the middle of these, but I think it could be obsolete with these new two categories. I think the today's GA is not popular exactly because it falls between these two categories and does not fit in either purpose properly. And they are neither good toys nor good tools. This first VSTOL would cover the toy part and day to day short distance travel, and the HALE the serious transportation case.
I will write another blog entry about this split of concepts later because I believe I have - as a GA customer - found what's wrong with it. What are the needs and what is the gap. I think I have the answer.
Monday, May 30, 2011
Interesting post about Dynaero Clmax (>3.0) at HBA
Read more here: http://www.homebuiltairplanes.com/forums/aircraft-design-aerodynamics-new-technology/10349-specifications-coefficient-lift-dyn-aero-lafayette-mcr-ban-bi.html
Friday, May 20, 2011
New renaissance for general aviation; what is needed and how that can be achieved
Yes, I am myself flying airplanes for fun, and the fun is very important. And the fun will need to remain important in the future as well. The fun part should therefore not be taken away. Airliners are taking the fun away, sitting in economy class is more like suffering than fun and business class is not fun either, everything has been made to take the attention away from the aviation, people are eating and drinking and not looking out of the window. Windows even are ridiculously small, even in business class.
Then if we look road transportation. How many people prefer traveling in bus rather than in a private car or taxi? Are you a bus-fan? At least I am not. We drive with our Prius to work everyday and my carbon emissions are less than they would be if we would drive with the 1/3 filled bus. You could argue that the bus drives anyway, but that is not the point. Bus travel is like being in the economy class, it does not have anything that I could describe with fun or enjoyable. However driving with own car or sitting in taxi can be much better experience.
So I think here is the cure for general aviation:
1) Diesel piston engine based efficient air taxis that can carry 5-6 persons. Requirement for the aircraft would be that they would need to be efficient (leading to low passenger mile cost), safe and comfortable. Low passenger mile cost means cost comparable to airline ticket price. This cost should be able to include the whole thing: aircraft cost, insurance, pilot, everything. I think this is doable, but requires some novel engineering and not doing things like they have been always done. These planes would look more like Burt Rutan's special machines with very long wings or they could be possibly also blended flying wings but one could not expect these to look like Cessna C150.
2) Personal aircraft (I am not repeating what cafe is saying about PAV, this is my personal view on this) intended for serious transportation with large level of automation. This calls for fly-by-wire and stability augmentation. Pilot would rather choose to which direction to drive rather than correcting for bumpy air or cross wind. It would be different from autopilot, you could still drive the plane, but the plane would make driving a lot more convenient and so much easier that most car drivers could learn it. There could be additional aids, such as landing aid which would automatically line up the plane with the runway. It could use machine vision to be able to help the landing path all the way to full stop on runway independently from navigation aids. It would be still fun to fly even if it would be much easier. Why the definition of fun has to be hard? These aircraft geared for personal transportation would be at least 4 place machines making them comparable to family car capability.
Lots of people are shouting that "more entry level planes are needed". I do not fully agree. There are lots of planes which are very suitable for flight training. For example the LSA planes, Diamonds, Cirruses etc. Of course if the intention was to fly a fly-by-wire PAV-machine, there could be a different path that would be trained with these PAV machines. Logical step in that direction would be to drop all medical, currency etc. requirements, but rather make the flying with these with similar requirements than driving a car. If flying these would be so easy, you simply would not need check rides now and then, BFRs etc. And then planes are made with unreliable parts which were certified 40 years ago while cars almost never break with parts that were designed one year ago.
In personal aircraft you fly with the computer the flying machine. This license should be upgradeable to a normal pilot's license which would require then learning to fly with planes with traditional controls and avionics. Some could argue that this would be so expensive as the computers would be so heavy and they would cost more than a plane and what not. I don't think so. Computer that can run this kind of algorithms in real time does not need to cost a fortune. In mass production, a reasonable price is hundreds of dollars, not tens of thousands or hundreds of thousands. Such computer weights less than 0.3 kg and while it would need some more weight for all the control hardware, it would not be that complicated. Actually telephones are so much more complicated today than any electronics in aircraft, in fact, these things are so low hanging fruits that they are waiting for somebody to implement.
What slows down the progress on this area in my opinion, is very conservative thinking in the aviation circles, not thinking out of the box and at least in Finland there seems to be a tendency to repeat old beliefs like they would be teachings in a church and even clever people may take silly things for granted. Of course that is all they can do, as there are no alternatives, but that does not mean it would be right. In fact, the situation with aviation is so desperate that this feels like some alternate universe in Stargate TV-series where things have gone real badly wrong. We are that dystopic parallel universe and someone needs to do something to fix it. So aviation in general needs a major overhaul. New kind of airplanes are needed, new kind of regulations are needed (while dropping old obsolete ones), new kind of air traffic control system is needed (when there are millions of personal planes in the air, there is no way for the current system to work, it is a dinosaur already, you can not have centralized system in a case where traffic is so huge, car traffic already has hard data about that) and new kind of attitudes are needed. New more efficient and less expensive mass produced planes and regulations are necessary enablers for the attitudes becoming more positive towards flying.
So what I am complaining about attitudes? Consider this: I was one day few years ago in cafeteria of the Malmi airport. There was a some mother with her child there. The little boy said that he wants to drive airplanes. The little boy spoke out the truth of what he wants. His mother then replied that "No, you can't fly planes, they are so expensive that only richest of the rich people can afford that and these planes are just fancy toys for yuppies". I was sorry to hear that. The no-way-you-can-fly attitude seems to be brainwashed to children at young age and their dreams are severed "ah that was the thing I can't do, so I don't consider about it". This must change, personal and air taxi -like flying needs to become common practice to get from point A to point B. Not something that is for only rich people, but something that is for everyone.
No densely packed people in huge planes like in cattle car. No queues in security checks. No limitations on liquids, take as much Coca Cola you like. And you just pack your gear to the plane and make departure and arrive shortly after to your destination. No flight planning, you just drive the plane and all your plan is almost automatic. No radio communications with air traffic control unless you are in trouble for some reason. It would all be automatic that computer would do for you.
Personal and air taxi style travel can augment or even replace domestic travel and also part of the travel to neighboring countries in Europe. Busses and trains are still needed despite there are personal cars and taxis, but this what I described above is the breakthrough that needs to happen. It does not happen by itself. It does not happen by government (FAA, CAA, LAA etc.) making it readily available for you. No it does not happen without lots of work. It requires you. When I was little child, I was thinking that "what kind of technology there is in year 2010". Later I realized that no, the technology is not given, it has to be done by people like you and me. Nothing is given, someone is always needed to invent, plan, design and implement it. Breakthroughs can be made by thinking out of the box and not just improving the envelope of the old. You can help by doing your part on that.
Thanks for reading and happy rest of the week.
Friday, May 6, 2011
The problem for series hybrid: Potential solution; flying wing
Therefore I am proposing now this series hybrid idea to flying wing instead. It would also save the long drive shafts and the associated problems which are in the Northrop early designs there.
The engine that drives the generator could reside in CG inside the wing and the electrical drive which is light could be distributed in the trailing edge to several motors and propellers.
This way also it would be possible to get lower disc loading for the same power for high altitude flight by distributing the power to several propellers which would be distributed in the trailing edge. This would work as alternative for using large propellers as these many props would move as much air as the two large props which would make the landing gear unbearably tall. These smaller props could also be inside the wake getting drag reduction benefit from the Goldschmied wake propeller idea but in a bit different form. These props would be easier to manufacture because of the lower power per prop and also smaller diameter for aeroelasticity considerations and it would also enable optimizing the prop planform to reynolds number on the rotation speed meaning very drastic taper ratio (very pointy blades with thick roots, and high curvature).
Interesting case example for poor power to weight ratio flying wing is Northrop N1M. 120 hp takeoff power for 1750 kg plane. That is enormously low power figure. The plane was upgraded later to a bit higher power, but it flew with that power, indicating that it would be realistic to design a rather heavy plane as a flying wing without needing to ending up using enormously big engines.
Focusing and streamlining my concepts into 5 steps or tiers
So these are now:
Tier 1: Conventional simplicity: Low drag low power low cost twin. Small wing but high aspect ratio. Compromise: Medium power to weight ratio required. Concept usable for personal aviation.
Potential outcomes: RC-models, UAVs, Private aircraft.
Budget: Shoe-string
Tier 2: Flying wing: Suitable for diesel power, series hybrid and other non-optimal power/weight ratio powerplants. Large wing. Compromise: Poor power to weight ratio is ok.
Potential outcome: Plane with long range and diesel economy. UAV applications possible.
Budget: Shoe-string, external funding possibly needed for the large craft
Tier 3: Ladder: Large aspect ratio, climb machine. Compromise: High power to weight ratio beneficial, has impact in fuel consumption. Interference drag from multi-fuselage configuration.
Budget: External funding required. Implementation requires substantial investments in infrastructure and machinery.
Tier 4: Scissor wing delta: Aircraft that are optimized for speed and altitude.
Budget: Requires substantial investments.
Tier 5: Will happen only if tier 1-4 succeed. Idea not announced. Not all of these will be guaranteed to produce real flying aircraft, these are just categorization for a family of concepts.
Sunday, February 6, 2011
Powerful electric motors
Turnigy CA120-70 Brushless Outrunner (100cc eq)
With two of these a small single seater would fly quite easily.
Wednesday, January 26, 2011
Pipistrel 200 kts 4-seat hybrid aircraft
Cafefoundation: Pipistrel hybrid
Looks pretty much like aerodynamically quite much cleaned up Diamond DA40 with some features somewhat resembling Nemesis NXT racer (e.g. the wing geometry) although with higher aspect ratio. I am confident that Pipistrel will succeed with this project and will show how the general aviation planes of tomorrow can be both efficient and fast and will not require many hundreds of horse power to be fast. I think this is one of the most interesting ones of the new production aircraft coming in sometime in the future.
The blog post says it is not a parallel hybrid, would that indicate then that it would be a series hybrid. It will be very interesting to see what will come up from this project. I will write more about it when I find more details.
UPDATE: Noticed from Cafefoundation page the bottom note; (Editor’s Note: Pipistrel will roll out the airplane in the new year, and will not allow disclosure of more than what has been shared here until then.) - this may mean that we don't hear more about this aircraft before 2012.
UPDATE 2: The new year referred on the previous post was written 2010, so if we are lucky, we will see roll out of the craft this year 2011 then. Lets wait and see. I am sure it will have specifications that will make some jaws dropping. Will be very interesting.
Saturday, January 22, 2011
Saving time in building process and still ensuring high quality
http://www.dragonplate.com/default.asp
Ready-made carbon sheets (could be used as bulkheads and wing ribs)
Pultruded carbon rods
Connection parts for the pultruded carbon rods.
With the connection parts available for example from this company, one could build a new kind of tube-fabric airplane or facet mobile, just glue some rods and sheets together and you are done. No welding required and end result will be stronger and lighter! It could be possible also build wing spar/internal wing structure like on the sky lifts from the rods and connection parts. It could be interesting how much longer wings could be achieved by optimized rod structure (and it could lead to higher aspect ratio for the same weight without aileron reversal and flutter problems).
Wednesday, January 19, 2011
PSRU for automotive engines
I bumped into this manufacturer about which somebody flying a Ford engine was very happy about. So I decided to share the link if that interests you any.
http://www.alternate-airpower.com/
Not sure if the price-what you get ratio is anywhere one could call affordable (7500 per unit) taking in account that this is a chain drive unit rather than a sophisticated reduction gear. However, reportedly this works. And the web page says at the moment "PSRUs are temporarily unavailable ". Maybe this is temporary I hope.